Common Core State Standards & Long-Term Learning Targets Math, Grade 4

Grade level	4
Discipline(s)	CCSS - Math
Dates	April, 2012
Author(s)	Dirk Matthias & Myra Brooks

"Fluency" is defined as accuracy, efficiency, and flexibility. (Russell, S. J. (2000). Developing computational fluency with whole numbers in the elementary grades. *The New England Math Journal, 32*(2), 40-54.)

Operations and Algebraic Thinking	Long-Term Target(s)
4.OA.1. Interpret a multiplication equation as a	I can explain what a multiplication equation
comparison, e.g., interpret $35 = 5 \times 7$ as a	represents.
statement that 35 is 5 times as many as 7 and 7	
times as many as 5. Represent verbal statements of	
multiplicative comparisons as multiplication	
equations.	
4.OA.2. Multiply or divide to solve word problems	I can explain the relationship between
involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the	multiplication and addition.
unknown number to represent the problem,	I can use multiplication and division to solve
distinguishing multiplicative comparison from additive comparison. ¹	problems.
(See Glossary, Table 2)	I can represent the context of a multiplication and
	division word problem using drawings and
	equations.
4.OA.3. Solve multistep word problems posed with	I can solve multi-step word problems using all four
whole numbers and having whole-number answers	operations.
using the four operations, including problems in which remainders must be interpreted. Represent	I can represent the context of a word problem,
these problems using equations with a letter	(including problems with remainders) using
standing for the unknown quantity. Assess the	drawings and equations.
reasonableness of answers using mental	and equations.
computation and estimation strategies including	I can use variables to represent unknown quantities
rounding.	in a problem.
	I can check the reasonableness of my answer using
	a variety of strategies.
1011	
4.OA.4. Recognize that a whole number is a	I can name the factors of all whole numbers 0-100.
multiple of each of its factors. Determine whether a	I am amplein the relational in hoters of Control
given whole number in the range 1–100 is a multiple of a given one-digit number. Determine	I can explain the relationship between factors and multiples.
whether a given whole number in the range 1–100	murupies.
is prime or composite.	I can determine whether any number 0-100 is a
	multiple of a given one-digit number.
	1 0 0 0
	I can determine whether any number 0-100 is
	prime or composite.

4.OA5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.	I can create a number or shape pattern that follows a rule. I can describe what I notice about the pattern besides the rule itself.
Number and Operations in Base Ten Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000	Long-Term Target(s)
4.NBT.1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70 = 10$ by applying concepts of place value and division.	I can explain the relationship between digits in different places within a whole number.
4.NBT.2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each	I can read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. I can compare multi-digit numbers using the
place, using >, =, and < symbols to record the results of comparisons.	symbols >, =, and <.
4.NBT.3. Use place value understanding to round multi-digit whole numbers to any place.	I can round multi-digit whole numbers to a given place.
4.NBT.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.	I can explain the relationship between addition and subtraction.
	I can add and subtract multi-digit whole numbers fluently.
4.NBT.5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply	I can multiply whole numbers using a variety of strategies. (4 digits x 1 digit; 2 digits x 2 digits).
two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	I can prove my calculations are correct using equations, rectangular arrays, and/or area models.
4.NBT.6. Find whole-number quotients and remainders with up to four-digit dividends and one-	I can explain the relationship between multiplication and division.
digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division.	I can find whole-number quotients and remainders using a variety of strategies.
Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	I can prove my calculations are correct using equations, rectangular arrays, and/or area models.

Number and Operations – Fractions	Long-Term Target(s)
Grade 4 expectations in this domain are limited to	
fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, 100.	
4.NF.1. Explain why a fraction a/b is equivalent to	I can explain the concept of fraction equivalence.
a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size	I can create equivalent fractions.
of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	I can reason about fraction size and equivalence using visual models.
4.NF.2. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	I can compare two fractions with different numerators and denominators using appropriate mathematical symbols (<, >, =). I can prove my fraction comparisons using visual models.
 4.NF.3. Understand a fraction a/b with a > 1 as a sum of fractions 1/b. Understand addition and subtraction of 	I can describe a fraction as the sum of smaller fractions.
fractions as joining and separating parts referring to the same whole.	I can prove my fraction decomposition using equations and visual models.
Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an	I can add and subtract fractions and mixed numerals with like denominators using a variety of strategies.
equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3/8 = 1/8 + 1/8 + 1/8$; $3/8 = 1/8 + 2/8$; $21/8 = 1 + 1 + 1/8$	I can solve problems involving addition and subtraction of fractions (with like denominators).
 1/8 = 8/8 + 8/8 + 1/8. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by 	I can represent the context of a fraction word problem using a variety of models.
using properties of operations and the relationship between addition and subtraction. – Solve word problems involving addition and	
subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.	

4.NF.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

- Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4)$.
- Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times$ (1/5), recognizing this product as 6/5. (In general, $n \times$ $(a/b) = (n \times a)/b.$
- Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

multiplication equations.

I can solve word problems involving multiplication of fractions by a whole number.

I can multiply a fraction by a whole number.

I can represent fractions using various

4.NF.5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) For example, express 3/10 as 30/100, and add 3/10 +

I can create equivalent fractions whose denominators are 10 and 100.

I can add fractions with denominators of 10 and 100.

I can explain my strategies for adding fractions.

4.NF.6. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

4/100 = 34/100.

I can explain the relationship between decimals and fractions.

4.NF.7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. I can use decimals to describe fractions with denominators of 10 and 100.

I can compare two decimals to the hundredths place using appropriate mathematical symbols (<, >, =).

I can prove my decimal comparisons using models.

Measurement and Data	Long-Term Target(s)	
4.MD.1. Know relative sizes of measurement units within one system of units including km, m, cm; kg,	I can describe the approximate sizes of units within one measurement system (metric, standard, time,	
g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger	etc.).	
unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For	I can compare larger and smaller units within the same measurement system.	
example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a	I can convert a given measurement into an	
conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),	equivalent unit.	
4.MD.2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money,	I can solve measurement word problems involving distances, time, mass, volume, and money.	
including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	I can represent measurement quantities using diagrams (with a measurement scale).	
4.MD.3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. <i>For example, find the width of a rectangular</i>	I can use area and perimeter formulas to solve problems.	
room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	I can represent the context of an area and perimeter word problem using a variety of models.	
4.MD.4. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction	I can make a line plot to display a data set involving fractions of a measurement unit.	
of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	I can use a line plot to solve fraction word problems involving addition and subtraction.	
4.MD.5. Recognize angles as geometric shapes that	I can describe angles using geometric vocabulary.	
are formed wherever two rays share a common endpoint, and understand concepts of angle	I can explain how to measure an angle.	
measurement:		
- An angle is measured with reference to a circle		
with its center at the common endpoint of the		
rays, by considering the fraction of the circular		
arc between the points where the two rays intersect the circle. An angle that turns through		
1/360 of a circle is called a "one-degree angle,"		
and can be used to measure angles.		
 An angle that turns through n one-degree 		
angles is said to have an angle measure of n		
degrees.		

4.MD.6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.	I can measure and draw angles using a protractor.
4.MD.7. Recognize angle measure as additive. When an angle is decomposed into non- overlapping parts, the angle measure of the whole	I can determine the measurement of a larger angle using smaller angle measurements.
is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and	I can find unknown angles using a variety of strategies.
mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.	I can solve word problems that involve unknown angle measurements.
Geometry	Long-Term Target(s)
4.G.1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	I can draw points, lines (parallel and perpendicular), line segments, rays, and angles (right, acute, obtuse). I can identify points, lines, line segments, rays, and angles in other shapes.
4.G.2. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.	I can classify shapes based on lines and angles. I can identify right triangles.
4.G.3. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.	I can identify a line of symmetry in a two-dimensional figure. I can recognize when a figure is symmetrical and when it is not.
	I can draw lines of symmetry (two-dimensional).